Skip to main content

Best Early Career Researcher in Theoretical Astrophysics

Prof. Selma E. de Mink

The 2017 MERAC Prizes for the Best Early Career Researcher are awarded in Theoretical Astrophysics to Prof. Selma E. de Mink for her major contributions to our understanding of the role of binarity as one of the dominant physical parameters for massive stars.

Selma de Mink completed her graduate studies in physics and math all Cum Laude at Utrecht University in the Netherlands. She continued with a PhD in theoretical astrophysics completed in 2010. She was then awarded the prestigious NASA Hubble fellowship, which she used to start her independent line of research at the Space Telescope Science Institute and Johns Hopkins University in Baltimore, Maryland. In 2013 she was awarded numerous fellowships and she chose to combine NASA's Einstein fellowship with the Princeton Lyman Spitzer fellowship, allowing her to spend her time between Carnegie Observatories, the TAPIR institute for theoretical astrophysics and relativity at the California Institute of Technology and Princeton University. In 2014 she returned to Europe to start to build her own research group as a MacGillavry assistant professor at the University of Amsterdam. Since then she was awarded a Marie Curie Fellowship (2015) and an ERC starting grant (2016).

Selma de Mink made a very large impact across different sub-disciplines in astrophysics by pushing our understanding of the role that binarity and rotation play in the complicated lives of massive stars. Her work has been absolutely crucial in changing the long held "single star paradigm" for massive stars. Although it was known before that massive binaries are common and give rise to various exciting phenomena, she and her collaborators showed that this property is necessary for a complete explanation of the main-sequence properties of massive stars, their diverse explosion channels and their various compact object remnants. Her theoretical work had large impact on the debate about the origin of merging binary black holes, as recently detected by the LIGO gravitational wave detector. Her early detailed simulations allowed her to explore new theories for the evolution of very close compact binary systems where the stars experience internal mixing processes. Selma de Mink is also recognised for her refreshing ideas challenging long-held beliefs, in particular on the possible role of massive binaries in explaining multiple populations in globular clusters.

The work of Selma de Mink has been conducted at the Anton Pannekoek Institute for Astronomy at the University of Amsterdam, The Netherlands, at the Carnegie Observatories and California Institute of Technology, Pasadena, USA, at the Space Telescope Science Institute and Johns Hopkins University, Baltimore, USA, at the Argelander Institut in Bonn, Germany, and at the Utrecht University, The Netherlands.